Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
نویسندگان
چکیده
Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies.
منابع مشابه
Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions
Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other s...
متن کاملFrequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans.
Frequency selectivity in the inner ear is fundamental to hearing and is traditionally thought to be similar across mammals. Although direct measurements are not possible in humans, estimates of frequency tuning based on noninvasive recordings of sound evoked from the cochlea (otoacoustic emissions) have suggested substantially sharper tuning in humans but remain controversial. We report measure...
متن کاملClick-evoked Otoacoustic Emissions for the As- Sessment of Auditory Filter Tuning at Supra- Threshold Levels
Reliable estimates of supra-threshold (60-80 dB SPL) filter tuning are necessary to understand auditory processing of speech. However, existing approaches suffer from methodological limitations that require high suppressor tone levels (psychoacoustics) or an assumption of linearity (otoacoustic emission group delay) to estimate human auditory filter tuning at higher stimulus levels. We propose ...
متن کاملCochlear, brainstem, and psychophysical responses show spectrotemporal tradeoff in human auditory processing.
Auditory filter theory posits a tradeoff in time-frequency analysis: high temporal precision is achievable only at the expense of poorer frequency resolution and vice versa. Here, we examined the hierarchy of brain mechanisms of these spectrotemporal tradeoffs through a series of physiological and behavioral measures aimed to tap temporal and spectral acuity at different levels of the auditory ...
متن کاملMusical experience sharpens human cochlear tuning.
The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 135 1 شماره
صفحات -
تاریخ انتشار 2014